On the Depth of Graded Rings Associated to Lex-segment Ideals in K[x, y]
نویسنده
چکیده
In this article, we show that the depths of the associated graded ring and fiber cone of a lex-segment ideal in K[x, y] are equal.
منابع مشابه
Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملGraded Rings Associated with Contracted Ideals
The study of the ideals in a regular local ring (R,m) of dimension 2 has a long and important tradition dating back to the fundamental work of Zariski [ZS]. More recent contributions are due to several authors including Cutkosky, Huneke, Lipman, Sally and Tessier among others, see [C1, C2, H, HS, L, LT]. One of the main result in this setting is the unique factorization theorem for complete (i....
متن کاملCompleteness results for metrized rings and lattices
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Togethe...
متن کاملLie Ideals and Generalized Derivations in Semiprime Rings
Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R ! R is called a generalized derivation on R if there exists a derivation d : R to R such that F(xy) = F(x)y + xd(y) holds for all x y in R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.
متن کاملGraded Prime Ideals Attached to a Group Graded Module
Let $G$ be a finitely generated abelian group and $M$ be a $G$-graded $A$-module. In general, $G$-associated prime ideals to $M$ may not exist. In this paper, we introduce the concept of $G$-attached prime ideals to $M$ as a generalization of $G$-associated prime ideals which gives a connection between certain $G$-prime ideals and $G$-graded modules over a (not necessarily $G$-graded Noetherian...
متن کامل